Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains.

نویسندگان

  • Rui Hao
  • Priyaanka Nanduri
  • Yanhua Rao
  • R Scott Panichelli
  • Akihiro Ito
  • Minoru Yoshida
  • Tso-Pang Yao
چکیده

Aberrant protein aggregation is a dominant pathological feature in neurodegenerative diseases. Protein aggregates cannot be processed by the proteasome; instead, they are frequently concentrated to the aggresome, a perinuclear inclusion body, and subsequently removed by autophagy. Paradoxically, proteasomes are also concentrated at aggresomes and other related inclusion bodies prevalent in neurodegenerative disease. Here, we show that proteasomes are crucial components in aggresome clearance. The disassembly and disposal of aggresomes requires Poh1, a proteasomal deubiquitinating enzyme that cleaves ubiquitinated proteins and releases ubiquitin chains. In Poh1-deficient cells, aggresome clearance is blocked. Remarkably, microinjection of free lysine (K) 63-linked ubiquitin chains restores aggresome degradation. We present evidence that free ubiquitin chains produced by Poh1 bind and activate the deacetylase HDAC6, which, in turn, stimulates actinomyosin- and autophagy-dependent aggresome processing. Thus, unanchored ubiquitin chains are key signaling molecules that connect and coordinate the proteasome and autophagy to eliminate toxic protein aggregates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Aggregates Are Recruited to Aggresome by Histone Deacetylase 6 via Unanchored Ubiquitin C Termini*

The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. The current model suggests that HDAC6 recognizes protein aggregates by binding dire...

متن کامل

Influenza A virus uses the aggresome processing machinery for host cell entry.

During cell entry, capsids of incoming influenza A viruses (IAVs) must be uncoated before viral ribonucleoproteins (vRNPs) can enter the nucleus for replication. After hemagglutinin-mediated membrane fusion in late endocytic vacuoles, the vRNPs and the matrix proteins dissociate from each other and disperse within the cytosol. Here, we found that for capsid disassembly, IAV takes advantage of t...

متن کامل

The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation.

The polyglutamine-containing neurodegenerative protein ataxin 3 (AT3) has deubiquitylating activity and binds ubiquitin chains with a preference for chains of four or more ubiquitins. Here we characterize the deubiquitylating activity of AT3 in vitro and show it trims/edits K48-linked ubiquitin chains. AT3 also edits polyubiquitylated (125)I-lysozyme and decreases its degradation by proteasomes...

متن کامل

In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome.

Degradation of many eukaryotic proteins requires their prior ligation to polyubiquitin chains, which target substrates to the 26S proteasome, an abundant cellular protease. We describe a yeast deubiquitinating enzyme, Ubp14, that specifically disassembles unanchored ('free') ubiquitin chains in vitro, a specificity shared by mammalian isopeptidase T. Correspondingly, deletion of the UBP14 gene ...

متن کامل

Reconstitution of the RIG-I Pathway Reveals a Signaling Role of Unanchored Polyubiquitin Chains in Innate Immunity

RIG-I detects invading viral RNA and activates the transcription factors NF-kappaB and IRF3 through the mitochondrial protein MAVS. Here we show that RNA bearing 5'-triphosphate strongly activates the RIG-I-IRF3 signaling cascade in a reconstituted system composed of RIG-I, mitochondria, and cytosol. Activation of RIG-I requires not only RNA but also polyubiquitin chains linked through lysine 6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 51 6  شماره 

صفحات  -

تاریخ انتشار 2013